On the inversion of yαey in terms of associated Stirling numbers

نویسندگان

  • D. J. Jeffrey
  • R. M. Corless
  • D. E. G. Hare
چکیده

The function y = Φα(x), the solution of y e = x for x and y large enough, has a series expansion in terms of lnx and ln lnx, with coefficients given in terms of Stirling cycle numbers. It is shown that this expansion converges for x > (αe) for α ≥ 1. It is also shown that new expansions can be obtained for Φα in terms of associated Stirling numbers. The new expansions converge more rapidly and on a larger domain. 1. Stirling numbers — Stirling cycle numbers [ n m ]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Inversions Relating Stirling, Tanh, Lah Numbers and an Application to Mathematical Statistics

Abstract. Inversion formulas have been found, converting between Stirling, tanh and Lah numbers. Tanh and Lah polynomials, analogous to the Stirling polynomials, have been defined and their basic properties established. New identities for Stirling and tangent numbers and polynomials have been derived from the general inverse relations. In the second part of the paper, it has been shown that if ...

متن کامل

Some Inversion Formulas and Formulas for Stirling Numbers

In the paper we present some new inversion formulas and two new formulas for Stirling numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995